
Jonathan Fletcher Lab Brigham and Women's Hospital, Harvard Medical School

Discoveries and Successes in GIST Basic Research

Dana-Farber/Harvard Cancer Center

KIT/PDGFRA activation (or NF1 inactivation) Kinase proliferation pathways

SDH-deficient GISTs

Most SDH-deficient GISTs have mutations in one of the 4 SDH genes

Other SDH-deficient GISTs have EPIGENETIC alterations that inactivate the SDHC gene (e.g., in Carney triad GISTs)

Unique biology among GISTs = genome hypermethylation

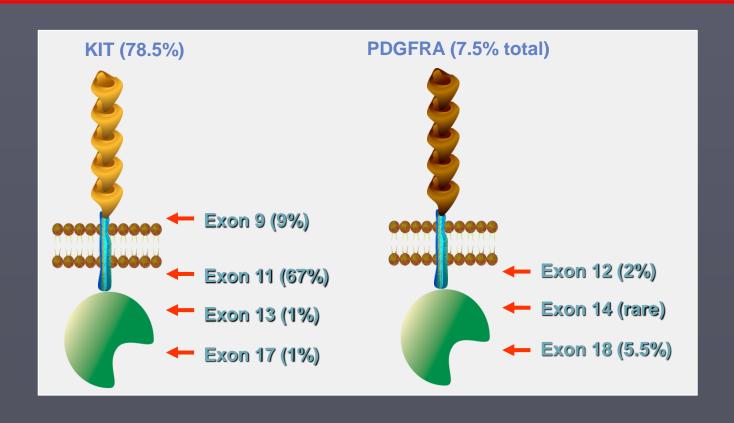
GIST Immunotherapies

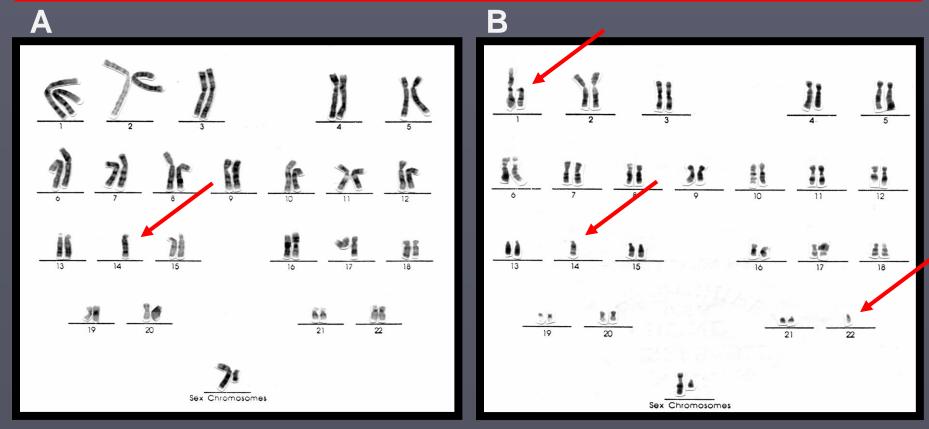
Immune checkpoint drugs = little/no clinical activity as single-agents.

Lab studies: immunotherapies might have better success in combination with KIT/PDGFRA inhibition (imatinib)

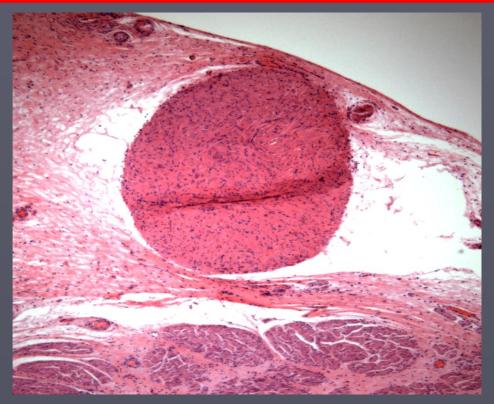
GIST Genetic (Genomic) Progression

► How a GIST progresses from benign tumor to cancer, after the initiating KIT, PDGFRA or NF1 mutation

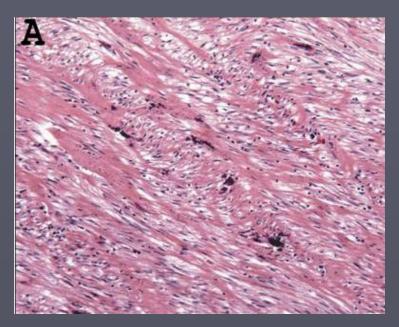

Jonathan Fletcher Lab Brigham and Women's Hospital, Harvard Medical School

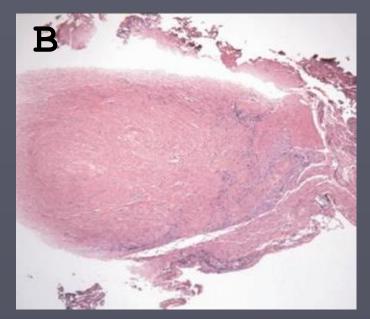

MicroGIST to Metastatic Imatinib-resistant GIST (progression in 8 genomic steps)

Dana-Farber/Harvard Cancer Center


Step 1: KIT/PDGFRA activation or NF1 inactivation

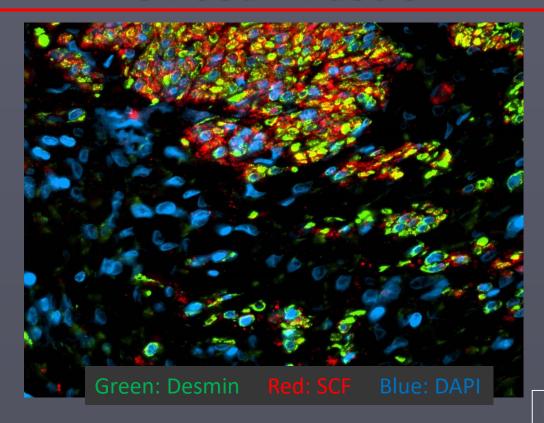
GIST: building on 14q deletion


KIT/PDGFRA-mutant microGIST (<1cm) Found in 30% of the general population

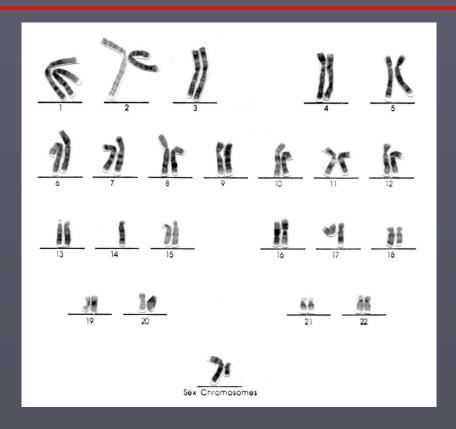

EG junction, spindle cell type

Dr. Cher-Wei Liang

Despite having KIT & PDGFRA mutations, MicroGISTs <u>struggle to grow</u>


Calcification

Hyalinization


Dr. Cher-wei Liang

Step 2: MicroGIST KIT activation helped by smooth muscle

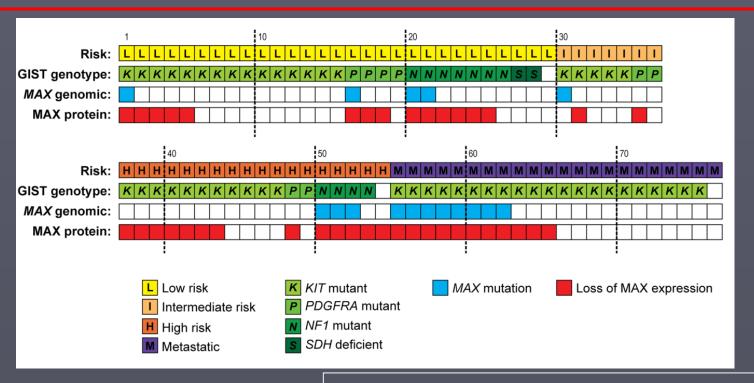
Dr. Jason Hornick

Step 3: 14q tumor suppressor: "MAX"

MAX mutations in GIST \rightarrow Cell cycle dysruption \rightarrow Cell growth

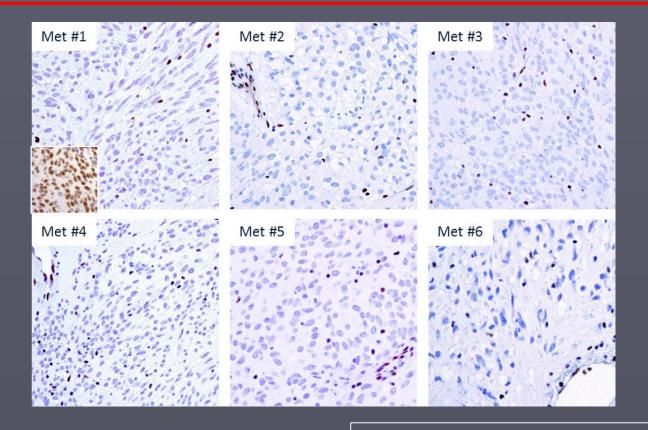
ARTICLE

Received 30 Dec 2016 | Accepted 20 Jan 2017 | Published 8 Mar 2017


DOI: 10.1038/ncomms14674

OPEN

MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation


Inga-Marie Schaefer¹, Yuexiang Wang^{1,†}, Cher-wei Liang^{1,†}, Nacef Bahri¹, Anna Quattrone^{1,2}, Leona Doyle¹, Adrian Mariño-Enríquez¹, Alexandra Lauria¹, Meijun Zhu¹, Maria Debiec-Rychter², Susanne Grunewald³, Jaclyn F. Hechtman⁴, Armelle Dufresne¹, Cristina R. Antonescu⁴, Carol Beadling⁵, Ewa T. Sicinska⁶, Matt van de Rijn⁷, George D. Demetri⁸, Marc Ladanyi⁴, Christopher L. Corless⁵, Michael C. Heinrich⁹, Chandrajit P. Raut¹⁰, Sebastian Bauer³ & Jonathan A. Fletcher¹

MAX inactivation in 50% of GISTs with KIT, PDGFRA, or NF1 mutations — but NOT in SDH-deficient GISTs

Dr. Inga-Marie Schaefer – Nat Commun 2017

MAX loss in all GIST mets from a given pt

Dr. Leona Doyle – Nat Commun 2017

Step 4: 22q target inactivation

Step 5: Cell cycle GENOMIC mutations

Low-risk GIST (N = 16)

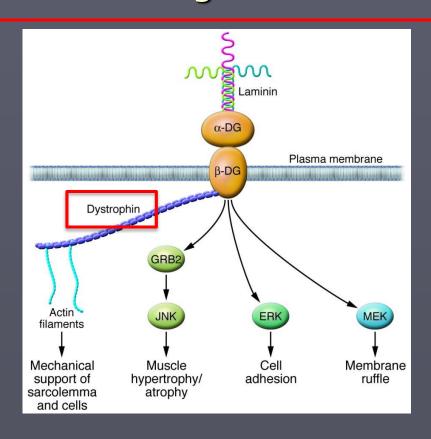
TP53	MDM2	CDKN2	RB1	ATM	None	%mut
0	0	0	0	0	16	0%

High-risk & Metastatic GIST (N = 32)

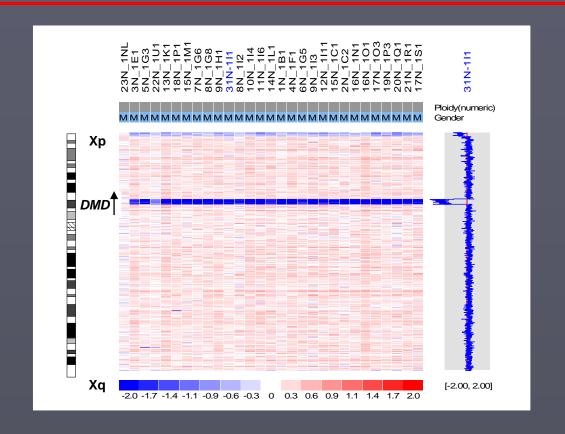
TP53	MDM2	CDKN2	RB1	ATM	None	%mut
5	1	18	4	1	4	>80%

Step 6: 15q target inactivation (modify the KIT oncogenic signal)

Step 7: DMD (dystrophin) inactivation

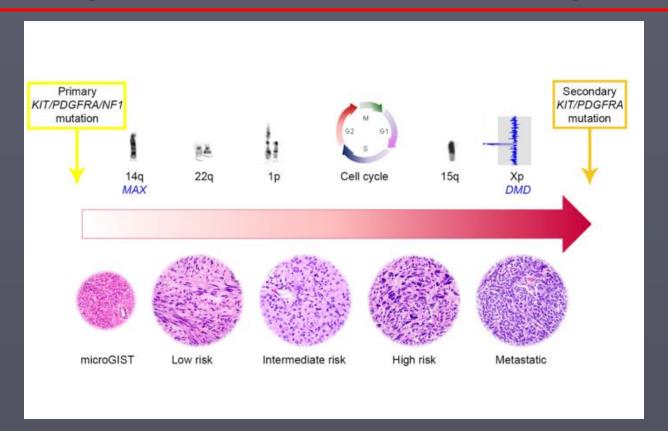

[Duchenne muscular dystrophy gene]

Dystrophin expressed in low-risk GISTs


Dystrophin inactivated in >80% of metastatic GISTs, generally by intragenic genomic deletions

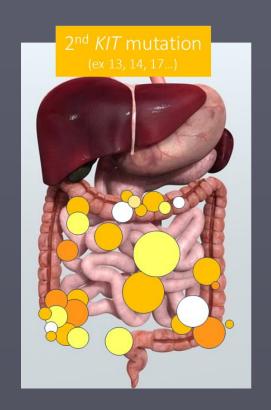
Dr. Yuexiang Wang; Nature Genetics, 2014

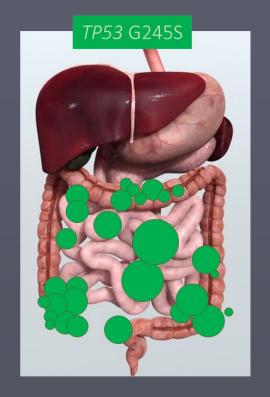
Dystrophin communicates between cytoskeleton and extra-cellular matrix: regulates invasion, migration



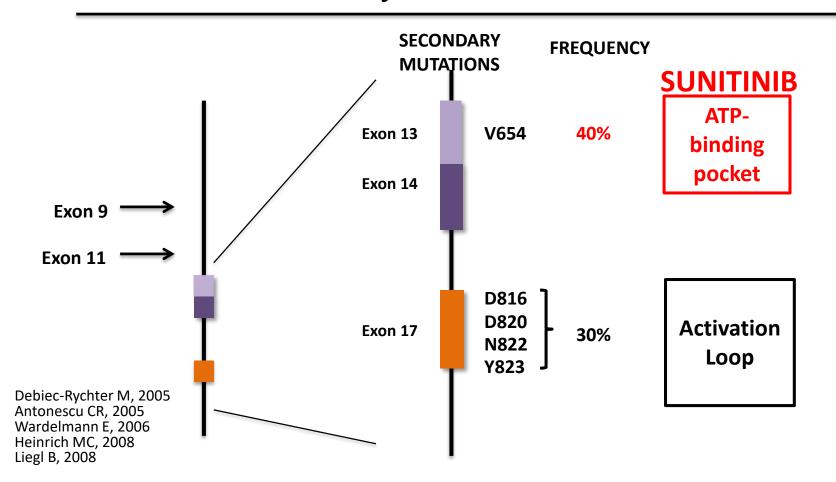
Identical DMD deletions in each of 28 GIST mets

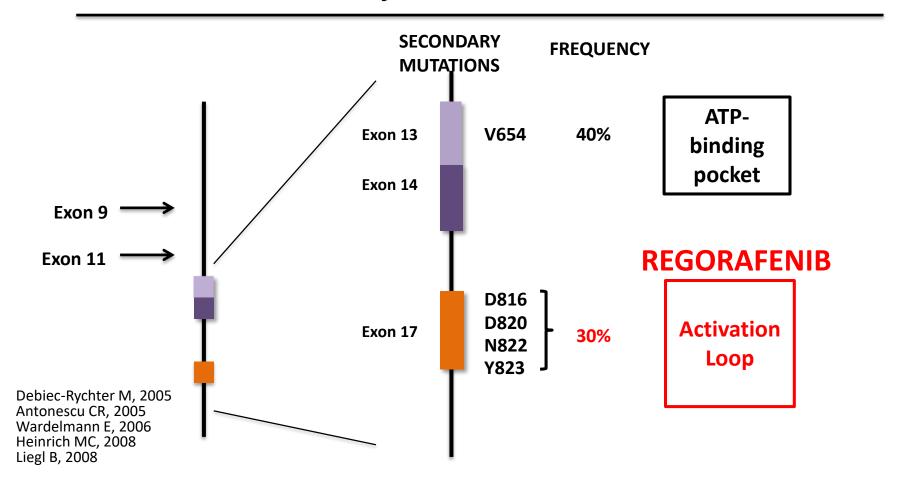
Yuexiang Wang et al. Nature Genetics, 2014; 46:601-6.


GIST Genomic Progression (KIT, PDGFRA, NF1 GISTs)


Step 8: Post-metastasis - emergence of imatinib-resistant subclones

- ► Imatinib-resistant 2nd KIT mutations
- Rare subclones in untreated GIST metastases
- Selected for during imatinib therapy, causing clinical progression
- ▶ 2nd KIT mutations arise independently of each other, in different metastases


29 metastases: Biologic heterogeneity & homogeneity



Secondary resistance in GIST

Secondary resistance in GIST

KIT/PDGFRA inhibition strategies

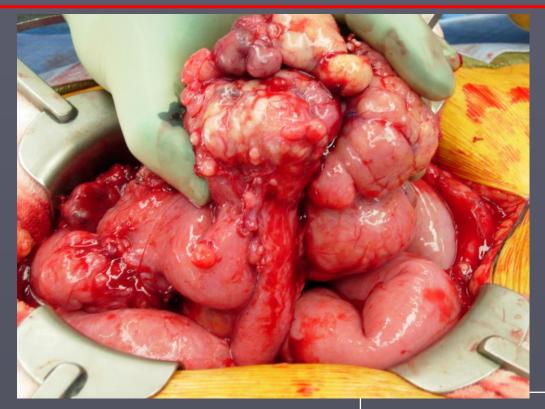
Drugs targeting particular mutations, eg PDGFRA D842V (BLU-285)

Switch-region inhibitors (Deciphera DCC-2618)

 Alternating inhibitors for KIT exon 13 & KIT exon 17 (SuRe trial of sunitinib – regorafenib)

8 Steps of GIST Initiation/Progression

- 1. KIT 1st mutation: initiation, weak proliferation
- 2. SCF from smooth muscle: proliferation
- 3. MAX inactivation: p16 extinction, proliferation
- 4. Chr22 inactivation:
- 5. CDKN2A, TP53, RB1 inactivation: proliferation
- 6. Chr15 inactivation:
- 7. <u>DMD</u> inactivation: <u>invasion, metastasis</u>
- 8. KIT 2nd mutations: <u>imatinib-resistance</u>


Circulating GIST DNA (cfDNA): Mutation detection in **blood** samples

Shows which imatinib-resistance KIT mutations each person has

Many assays being developed and tested (not yet a standard approach)

Assay sensitivity and specificity are not yet perfect

Molecular analyses of 46 nodules (52 regions sampled) After imatinib and sunitinib

Courtesy of Dr. Chandrajit Raut

Molecular analyses of 46 nodules (52 regions sampled) After imatinib and sunitinib

Specimen	KIT 2nd Mutation	Specimen	KIT 2nd Mutation	Specimen	KIT 2nd Mutation
1	QLP575-577H del	17	N822K	32	N822K
2	S840N	18A	N822K	33	F681L
3	S840N	18B		34	
4		18C	S840N	35A	
5		19	N822K	35B	
6	S840N	20	S840N	35C	
7	ID571-572T	21	N822K	36A	N680K
8A	S840N	22	S840N	36B	N680K
8B	S840N	23	S840N	37	
9	S840N	24	N822K	38	
10	S840N	25	N822K	39	
11	ID571-572T	26	S840N	40	
12	N822K	27	N822K	41	S840N
13		28	N822K	42	ID571-572T
14	N822K	29	N655S	43	
15	S840N	30	N822K	44	N822K
16		31	N822K	45	
				46	N822K

Circulating GIST DNA (cfDNA): Mutation detection in **blood** samples

Shows which imatinib-resistance KIT mutations each person has

Many assays being developed and tested (not yet a standard approach)

- Assay <u>sensitivity</u> and specificity are not yet perfect
 - ► GISTs seem to be "low-shedders" of DNA into blood

What do we need??

- Genome sequencing has NOT provided all the information necessary to understand GIST
- RNAseq expression of each gene
- Epigenomics regulation of each gene
- Proteomics expression & activation of all proteins
- Functional genomics knock out each gene in GIST
- ?Drug screens test thousands of drugs

Acknowledgements

Brigham and Women's Hospital

Department of Pathology

Inga-Marie Schaefer

Yuexiang Wang

Cesar Serrano

Adrián Mariño Enríquez

Leona Doyle

Meijun Zhu

Nacef Bahri

Stacy Yanofsky

Jason Hornick

Christopher D.M. Fletcher

Division of Surgical Oncology

Chandrajit P. Raut

University of Essen

Sebastian Bauer

Thomas Muhlenberg Susanne Grunewald

Ludwig Center at Dana Farber Cancer Institute

George D. Demetri

Suzanne George

Treviso

Angelo Paolo dei Tos

Sabrina Rossi

Oregon Health and Science University

Michael C. Heinrich

Christopher L. Corless

Stanford

Matt van de Rijn

Memorial Sloan Kettering Cancer Center

Cristina Antonescu

El Hospital Virgen del Rocio de Sevilla

Javier Martin Broto

National Institutes of Health (CA127003 and CA168512),

GIST Cancer Research Fund, The LifeRaft Group, SARC,

Deutsche Krebshilfe