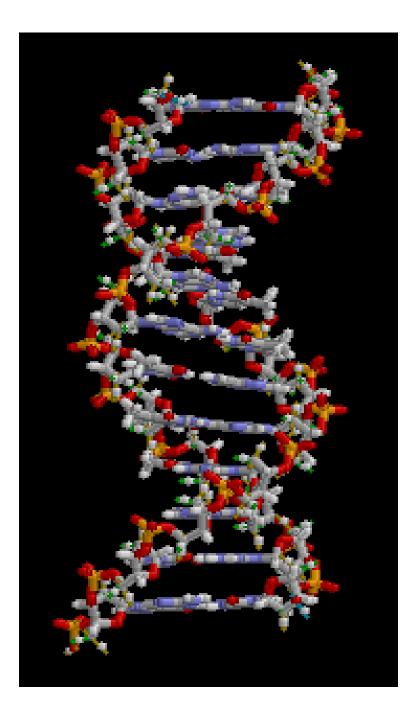


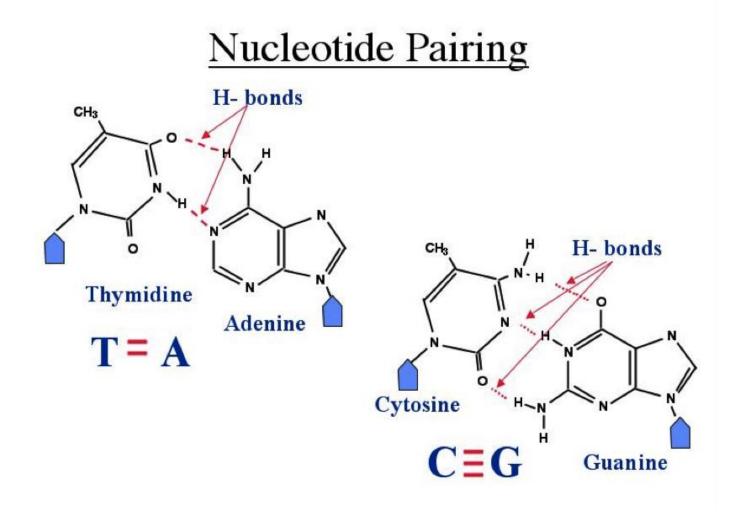
The International Sarcoma Kindred Study (ISKS)


Prof Ian Judson MD, FRCP

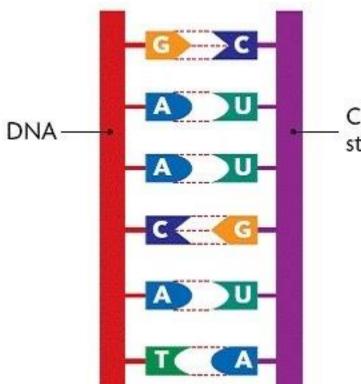
The Institute of Cancer Research

Structure of a gene

Introns: are transcribed but then removed from mRNA – in part code for regulatory RNA

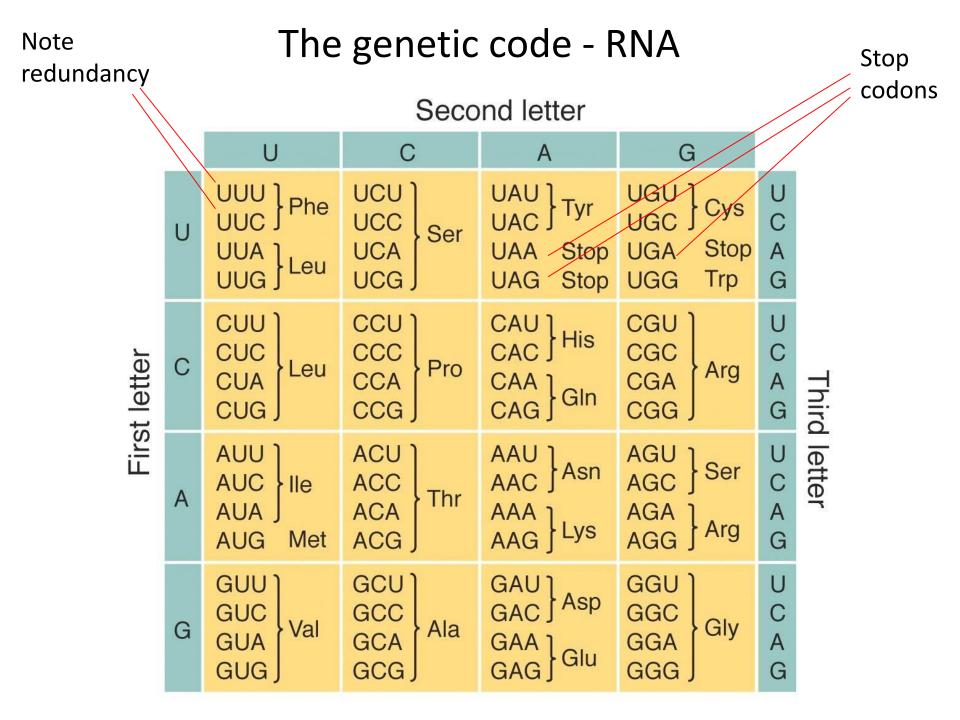


Base pair matching DNA-DNA; DNA-RNA

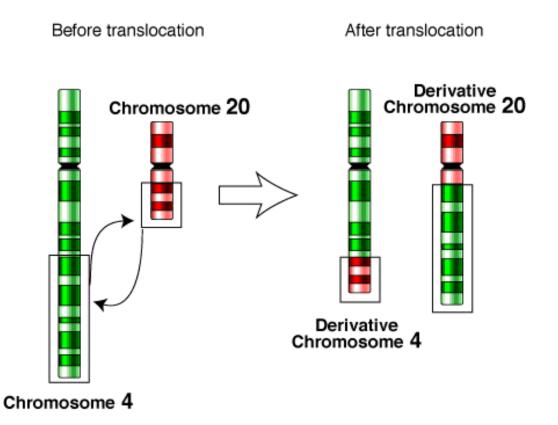

- DNA has 4 "letters" or bases & is double-stranded
 - TAGC: Thymine, Adenine, Cytosine, Guanine
- DNA bases pair as T-A & C-G, permitting the two complementary strands of the double helix to replicate precisely

- RNA has 4 bases and is single stranded
 UACG: Uracil, Adenine, Cytosine, Guanine
- DNA-RNA bases pair as T-A, A-U, & C-G

How base pairing works



DNA→ RNA: making mRNA


Complementary strand of mRNA

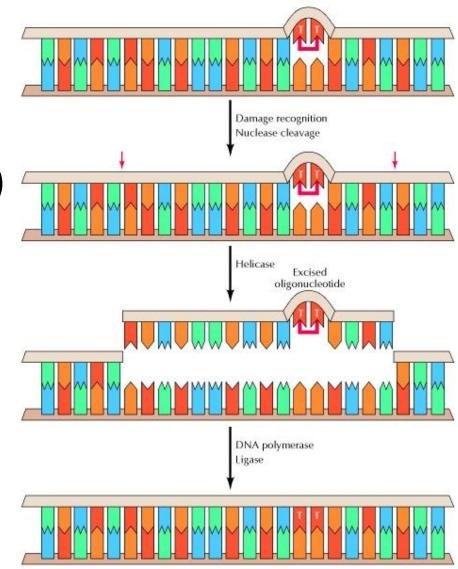
> 3 consecutive bases code for an amino acid – the building blocks of protein – this is the real genetic code

Som	e types	ofmu	tation
Missense	UAUAGU UAUAGA	-	Might change protein function
Insertion	UAUAGU UAU <mark>G</mark> AGU	•	Frameshift – everything changed from
Deletion	UAUAGU UAUGAA A		this point
Nonsense	UAUAGU UAUUAG (UAG is a stop	Tyr	Truncated protein – not usually functional

Chromosomal translocation – e.g. synovial sarcoma, Ewing sarcoma, etc

Result can be gain of function or loss of function

Complex karyotype sarcoma – e.g. LMS, UPS: multiple duplications, deletions, translocations, etc. – due to failure of DNA repair?


	I SI CI	êl tit	818
Contraction of the second seco		14 6613 25	5 963 9 6
a à à a	aakss oo	18 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
83,88	5.5 33.0 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	

Types of DNA repair

- Base Excision Repair (BER)
- Mismatch Repair (MMR)
- Single-Strand Breaks (SSBs)
- Double-Strand Breaks (DSBs)

Example: Nucleotide Excision Repair (NER)

- removing a thymidine dimer from DNA
- Repairing a DSB *much* more complicated

Genomics - DNA sequencing in sarcoma

- Few sarcomas are driven by specific mutations
 - Activated *KIT* in GIST is an exception
- Gene sequencing studies have as yet had a relatively low yield for identifying targetable drivers
 - Some new targets discovered, e.g. NTRK2
- Understanding inherited predisposition may improve our understanding of the underlying molecular mechanisms involving sarcomas

Molecular targets in sarcomas

- Tumour-specific mutations
 - activating receptor tyrosine kinase
 - e.g. KIT in GIST
 - loss of function of tumour suppressor genes
 - e.g. TSC1/2 in PEComa activates mTOR pathway
- Translocation-related targets
 - activate key gene or lose suppression
 - e.g. COL1A1/PDGFB in DFSP; loss of SMARCB1 in synovial
- Gene amplification
 - usually activation
 - e.g. CDK4/MDM2 amplification in dediff liposarcoma
- Angiogenesis / tumour stromal interactions

ASCO 2017 **N**ext **G**eneration **S**equencing (NGS) in 4900 sarcoma pts

Gounder et al, J Clin Oncol 2017;35(15_suppl) 11001

- 62,000 mutations, 1200 fusions
- 8% abnormalities "actionable" by approved drugs not necessarily proven activity
- 9% possibly actionable by drugs approved for other indications
- 40% a biomarker or possible driver linked to investigational agents
- 9% germline abnormalities (incl BRCA1/2, ARID1, FANCX)
- Potentially "actionable" mutations included: AKT, ESR1, BRCA, NTRK, PTCH1, SMARCB1 & others

ASCO 2017 NGS in sarcomas

Gounder et al, J Clin Oncol 2017;35(15_suppl) 11001

- Partial /Complete responses seen with inhibitors of NTRK, IDH1, BRAF, PI3K/mTOR, MDM, SMARCB1
- NGS changed diagnosis and treatment in 5% and avoided futile therapy in 5%
- NGS could have major impact in future, but requires further validation

ASCO 2017 NGS in sarcomas Italiano et al J Clin Oncol 2017;35(15_suppl)11002

- AACR GENIE consortium 587 pts
 - 10 most frequently mutated genes: TP53 (35%), ATRX, KMT2D, NF1, ATM, PI3KCA, ERBB4, PTEN, ARID1A
 - Most frequently amplified genes: MDM2, CDK4, MAP2KA, TERT
 - Most frequently deleted genes: RB1, CDKN2A, TP53, PTEN
 - High percentage of *potentially* actionable mutations

Cancer predisposition syndromes associated with sarcoma

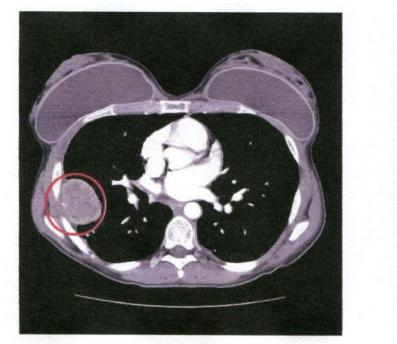
- Li-Fraumeni (TP53) all sarcomas
- Hereditary retinoblastoma (RB1) osteosarcoma, LMS, others
- **Neurofibromatosis** (*NF1*) MPNST
- Familial adenomatous polyposis (FAP) desmoid tumour
- Familial, syndromic GIST (KIT) SDH in Carney-Stratakis syndrome
- Tuberous sclerosis complex (TSC1/2) PEComa
- Hereditary leiomyomatosis (FH) mainly benign leiomyomata (rarely malignant) and renal cancer

COMPLEX GENOTYPE SARCOMAS DISPLAY FAMILIAL INHERITANCE INDEPENDENT OF KNOWN CANCER PREDISPOSITION SYNDROMES

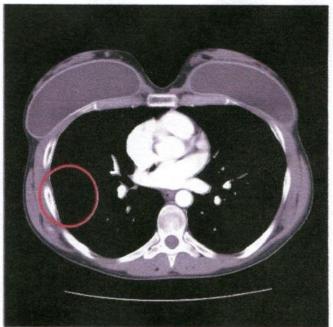
Kevin B. Jones, Josh Schiffman, Wendy Kohlmann, R. Lor Randall, Stephen L. Lessnick, and Lisa A. Cannon-Albright

Cancer Epidemiol Biomarkers Prev 2011 May ; 20(5): 751–757.

- Utah Cancer Registry and Utah Population Database (2.3 million people) interrogated for sarcomas – split into complex genotype and balanced translocation
- Geneological Index for Familiality (GIF) calculated and relative risk (RR) for 1st, 2nd, 3rd degree relatives estimated
- 229 balanced and 1161 complex genotype sarcomas identified with at least 3 generations of ancestral information
- No evidence inherited risk for balanced translocation group, but significant GIF (p=0.03) in complex genotype group
- 20 high risk pedigrees: >5 sarcomas and other cancers, didn't fit known syndromes


Germline, i.e. inherited, *PTPRD* Mutations in Ewing Sarcoma: Biologic and Clinical Implications

Yunyun Jiang, Filip Janku, Vivek Subbiah, Laura S. Angelo, Aung Naing, Peter M. Anderson, Cynthia E. Herzog, Siqing Fu, Robert S. Benjamin, Razelle Kurzrock


Oncotarget 2013;4(6):884-889

- Novel germline mutation in tumour suppressor gene *Protein tyrosine phosphatase delta (PTPRD)* in 3/8 pts with metastatic Ewing sarcoma (37.5%)
- Impact expected to be loss of STAT3 dephosphorylation, a function of PTPRD
- STAT3 phosphorylated after recruitment to IGF-1R so mutation could lead to constitutive activation of IGF-1R
- 2/3 pts with germline PTPRD mutatoins achieved durable responses following treatment with IGF-1R MAb – based therapy

Response to IGF-1R inhibition in patient with *PTPRD* mutant Ewing sarcoma

Prior to treatment

15 months after treatment

Patient 1 demonstrated a durable complete response to therapy with an IGF-1R inhibitor.

Jiang et al Oncotarget 2013;4(6):884-889

Frequent inactivating germline mutations in DNA repair genes in patients with Ewing sarcoma Germline mutations in Ewing sarcoma Andrew Brohl, Rajesh Patidar, Clesson Turner, Xinyu Wen, Young Song, Jun Wei, Kathleen Calzone, Javed Khan.

Genet Med 2017;19:955-958

- Germline sequencing 175 pts with Ewing sarcoma
- 51 tier 1 variants, 23 likely pathogenic including APC, BLM, BRCA1, ERCC3, FANCC, FANCM, MITF, PTCH2, RAD51, RET, TP53
- Genes involved in double-strand DNA repair enriched
- Number of potentially actionable mutations, e.g. BRCA1/2: PARP inhibitors, PTCH1/2: Hedgehog pathway inhibitors

Different approaches to studying cancer predisposition

The ROYAL MARSDEN NHS Foundation Trust

Molecular investigations into the genetic causes of multiple primary cancers: Pilot Phase

Short Title: Genetics of Multiple Cancers Study (GeMCaS) Chief Investigator : Clare Turnbull

The International Sarcoma Kindred Study: A global multi-site prospective cancer genetics study Chief investigator David Thomas, Sydney

International Sarcoma Kindred Study

- Recruit sarcoma patients and their families
- Obtain germline DNA (from blood) from both patient and relatives (1st and 2nd degree)
- Construct family tree, or pedigree, of cancer history
 - Particular interest in patients with multiple primary tumours
- Study genetics initially by sequencing known or likely cancer genes, later whole genome

Monogenic and polygenic determinants of sarcoma risk: an international genetic study

Mandy L Ballinger*, David L Goode*, Isabelle Ray-Coquard, Paul A James, Gillian Mitchell, Eveline Niedermayr, Ajay Puri, Joshua D Schiffman, Gillian S Dite, Arcadi Cipponi, Robert G Maki, Andrew S Brohl, Ola Myklebost, Eva W Stratford, Susanne Lorenz, Sung-Min Ahn, Jin-Hee Ahn, Jeong Eun Kim, Sue Shanley, Victoria Beshay, Robert Lor Randall, Ian Judson, Beatrice Seddon, Ian G Campbell, Mary-Anne Young, Rajiv Sarin, Jean-Yves Blay, Seán I O'Donoghue, David M Thomas, for the International Sarcoma Kindred Study† Ballinger et al. Lancet Oncology 2016;17(9):1261-71

	F	Proband	International
Participants Male Female		586 576	Sarcoma Kindred Study
Mean age at diagnosis (yrs±SD) First cancer Sarcoma		4.1±18.5 5.2±18.9	
Number with multiple primary cancers 2 primary cancers 3 primary cancers ≥4 primary cancers	17	70 (15%) 128 32 10	
Pedigree classification	Number	Risks to FDR (95% CI)	
No syndrome Classic/Chompret Li Fraumeni Syndrome Hereditary breast/ovarian cancer Hereditary colorectal cancer Clinically suspicious* Other Uninformative	669 116 6 14 87 14 256	0.79 (0.71-0.88) 2.36 (1.95-2.87) 2.64 (1.32-5.28) 2.29 (1.38-3.79) 1.83 (1.55-2.15) 1.2 (0.89-1.61)] 16% recognisable syndromes

-

Clinically actionable mutations

(American College of Genetics and Genomics reporting guidelines)

© American College of Medical Genetics and Genomics

ACMG POLICY STATEMENT Genetics

ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing

 Robert C. Green, MD, MPH^{1,2}, Jonathan S. Berg, MD, PhD³, Wayne W. Grody, MD, PhD^{4–6}, Sarah S. Kalia, ScM, CGC¹, Bruce R. Korf, MD, PhD⁷, Christa L. Martin, PhD, FACMG⁸, Amy L. McGuire, JD, PhD⁹, Robert L. Nussbaum, MD¹⁰, Julianne M. O'Daniel, MS, CGC³,
 Kelly E. Ormond, MS, CGC¹¹, Heidi L. Rehm, PhD, FACMG^{2,12}, Michael S. Watson, PhD, FACMG¹³, Marc S. Williams, MD, FACMG¹⁴ and Leslie G. Biesecker, MD¹⁵

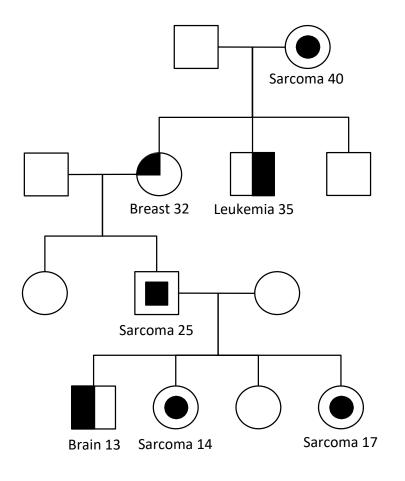
Genet Med 2013;15(7):565-74

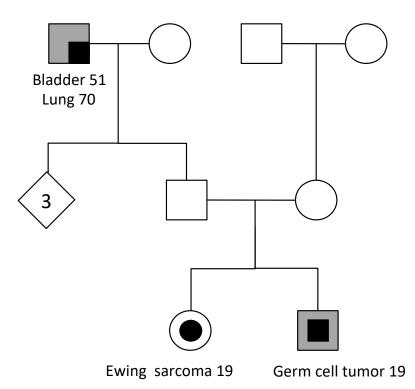
Some key recommended reportable findings relating to cancer (C4/5)

	Gene	Number
Colorectal cancer		
	APC	6
	MMR	11
Breast/ovarian can	icer	
	BRCA1	9
	BRCA2	19
	PALB2	5
Gastric cancer		
	CDH1	6
Chompret LFS		
	TP53	12
Neurofibromatosis	;	
	NF1	4
Gorlin syndrome		
	PTCH1	3
Paraganglioma		
	SDHB	2
Other		
	TSC2/RB1/PTEN	3

Total	80

Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results

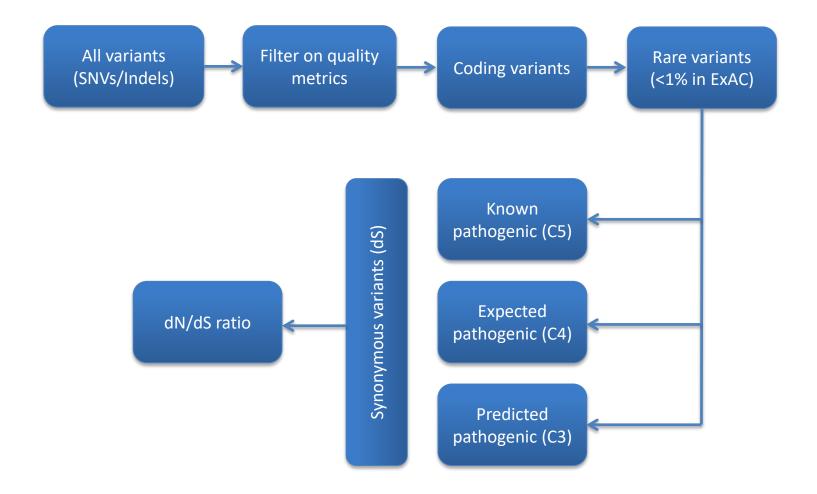

Sharon E. Plon1,*,#, Diana M. Eccles2,*, Douglas Easton3, William D. Foulkes4, Maurizio Genuardi5, Marc S. Greenblatt6, Frans B.L. Hogervorst7, Nicoline Hoogerbrugge8, Amanda B. Spurdle9, and Sean Tavtigian10 for the IARC Unclassified Genetic Variants Working Group†


Hum Mutat. 2008 November ; 29(11): 1282–1291

Classification System for Sequence Variants Identified by Genetic Testing

Class	Description	Probability of being Pathogenic
5	Definitely Pathogenic	>0.99
4	Likely Pathogenic	0.95–0.99
3	Uncertain	0.05–0.949
2	Likely Not Pathogenic or of Little Clinical Significance	0.001–0.049
1	Not Pathogenic or of No Clinical Significance	<0.001

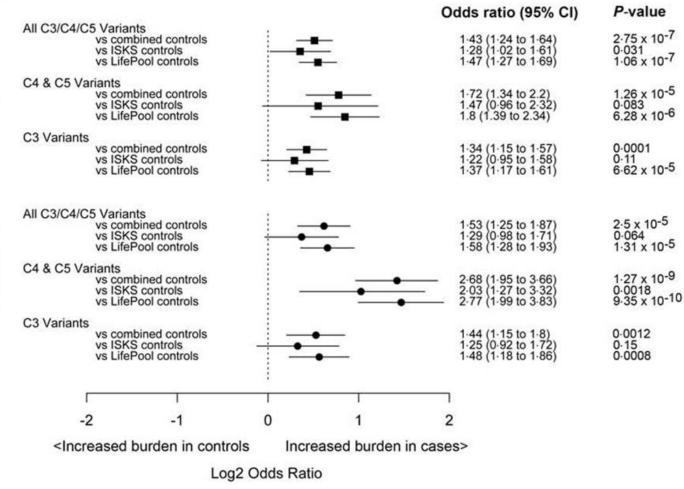
Diverse patterns of inheritance



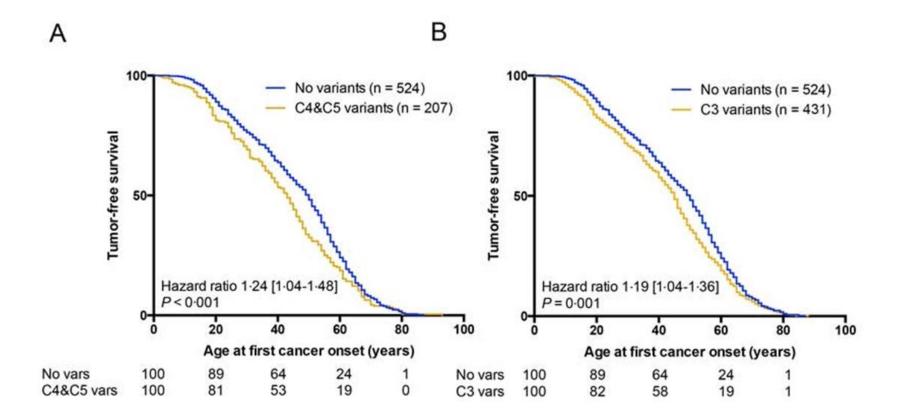
dN/dS ratio & other abbreviations

- dS: synonymous variants nucleotide substitutions that don't change the amino acid
- dN: non-synonymous variants nucleotide substitutions that change the amino acid, i.e. potentially meaningful mutations
- The dN/dS ratio indicates the amount of alteration from the norm, in normal or in cancer evolution
- SNV- single nucleotide variation
- Indel insertion or deletion
- ExAc Exome Aggregation Consortium browser

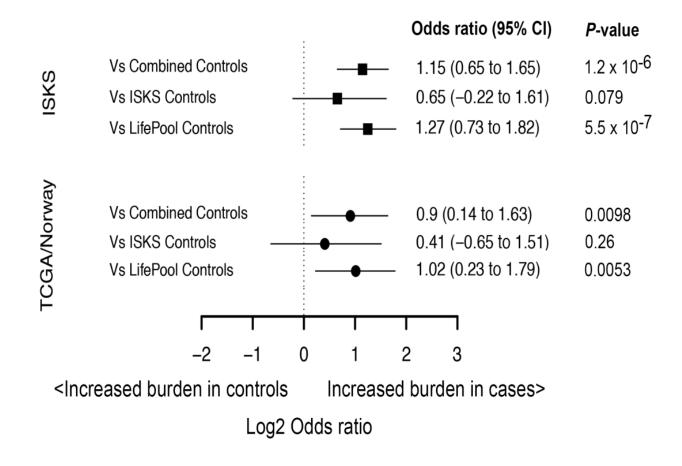
Rare variant calling algorithm


David Goode

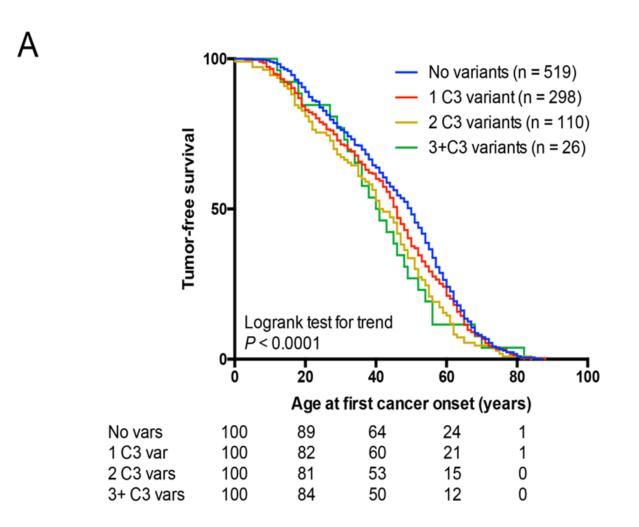
Between cohort analyses: case-control design, number of different series


	10
	¥
	1
	ŝ
	2
	0
	5
	4
	ŝ
	Ē
	Ē
	0
	S
	1
	10
3	ഗ

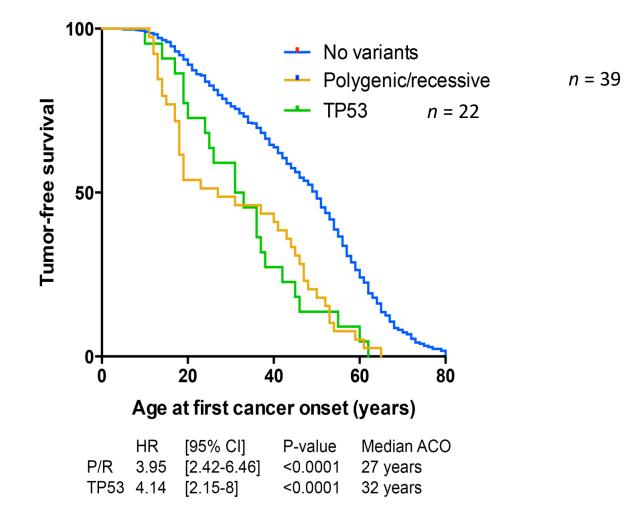
С


TCGA/NoSarc

Within cohort analyses: age at first onset as index of risk

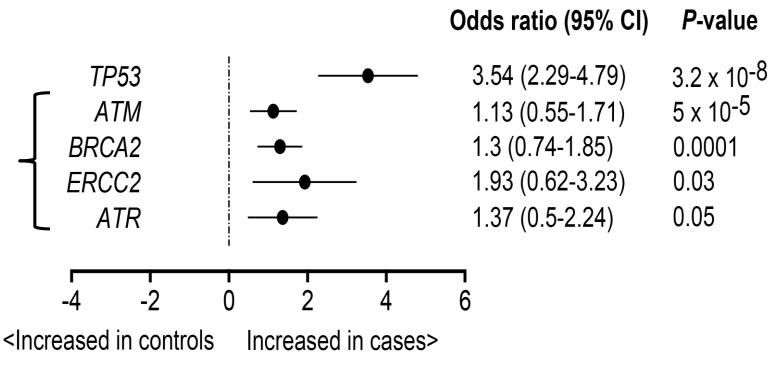


Polygenic inheritance and cancer burden



Slide courtesy of David Thomas

Polygenic inheritance and age at first cancer as measure of impact



Age at first onset of cancer: polygenic disease vs TP53 mutation

Slide courtesy of David Thomas

Alterations in four genes not previously associated with sarcoma

Log2 Odds ratio

Slide courtesy of David Thomas

David Goode

Normal function of these "sarcoma genes" – recognising DNA damage and DNA repair

- ATM MRN complex recognises DNA double strand breaks and activates ATM, which recruits repair processes
- *ATR* sensing DNA damage single strand breaks, activate CHK1, initiate cell cycle arrest
- BRCA2 involved in homologous recombination
- *ERCC2* transcription-coupled nucleotide excision repair

Does ISKS suggest targets for therapy?

- DNA repair gene mutations: BRCA1/2, ATR, ATM, ERCC2, FANCG, FANCM suggest role for DNA repair inhibitors, e.g. PARP & ATR inhibitors
- *MLH1/2, MSH6* mutations may predict response to immune checkpoint inhibitors
- *PTCH1* mutations Hedgehog inhibitors
- TSC1/2 mutations mTOR inhibitors (PEComa)
- IDH1/2 specific inhibitors in development (chondrosarcoma?)

Conclusions from the ISKS to date

- 1 in 6 families affected by sarcoma conform to a recognisable heritable cancer predisposition syndrome
- One in 2 individuals carry biologically pathogenic 'pansarcoma' variants
- One in 15 individuals carry clinically pathogenic variants in actionable genes, mostly without an associated syndromic pattern
- Expanded 'pan-sarcoma' risk genes: ERCC2, BRCA2, ATM, ATR
- One in 4 individuals carry variants with possible therapeutic significance
- The frequency and biological impact of rare polygenic causes is at least comparable to monogenic causes

PLOS ONE

High Frequency of Germline *TP53* Mutations in a Prospective Adult-Onset Sarcoma Cohort

Gillian Mitchell^{1,4}, Mandy L. Ballinger^{2,4}, Stephen Wong³, Chelsee Hewitt³, Paul James^{1,4}, Mary-Anne Young^{1,4}, Arcadi Cipponi^{2,4}, Tiffany Pang^{2,4}, David L. Goode^{2,4}, Alex Dobrovic^{3,4,5}, David M. Thomas^{1,2,4},*, on behalf of the International Sarcoma Kindred Study² 3.6% incidence of germline *TP53* mutation in ISKS

Table 2. Proband cancers and clinical classification.

Case	Sex	Proband primary cancers, age at diagnosis (yrs)	Clinical classification
Putative germline			
1	м	rhabdomyosarcoma 33	LFS
2	м	osteosarcoma 20	LFS
3	м	chondrosarcoma 24; liposarcoma 39	LFS
4	м	sarcoma NOS 37; liposarcoma 44	LFS
5	F	angiosarcoma 25	Chomp LFL
6	F	breast 33; leiomyosarcoma 48	Chomp LFL
7	F	breast 38; leiomyosarcoma 45; thyroid 46	Chomp LFL
8	F	ALL 10; Ewing sarcoma 16	Chomp LFL
9	F	breast 26; sarcoma NOS 36; pheochromocytoma 37	Chomp LFL
10	м	Hodgkin's lymphoma 34; melanoma 47; sarcoma NOS 60	Chomp LFL
11	м	DSRCT 21	Negative
12	м	testis 36; rectum 69; leiomyosarcoma 69	Negative
13	F	chondrosarcoma 57	Negative
14	M	osteosarcoma 19	Negative
15	м	osteosarcoma 31	Negative
16	F	leiomyosarcoma 58	Negative
17	F	liposarcoma 62	Negative
Putative somatic			
18	м	mediastinal GCT with rhabdomyosarcomatous differentiation 19	Chomp LFL
19	м	GIST 65; melanoma 69; sarcoma NOS 76; mycosis fungoides 76	Negative
20	F	sarcoma NOS 80	Negative

ALL, acute lymphoblastic leukemia; DSRCT, desmoplastic small round cell tumour; GCT, germ cell tumour; GIST, gastrointestinal stromal tumour; Chomp, Chompret; M, male; F, female. doi:10.1371/iournal.pone.0069026.t002

Screening in TP53 mutation carriers

Ballinger et al – metaanalysis of 13 prospective cohorts of *TP53* mutation carriers screened by whole body MRI

31% needed investigation

34/578 individuals found to have new primary cancer(s) – 6%

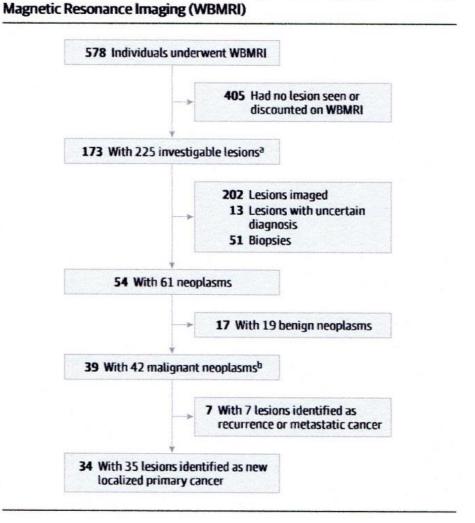
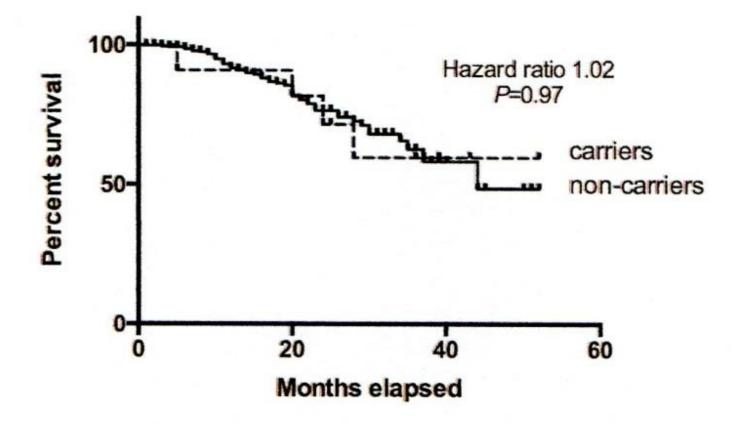



Figure. Flowchart of Disposition of Participants Undergoing Whole-Body

Prognosis of cancers in TP53 carriers

Screening regimen for *TP53* mutation carriers at NCI

Mai et al JAMA Oncol 2017

Children (Aged 3-16 Years)

- Annual complete history and physical examination
- Blood tests every 4 months: FBC, LDH, ESR, β -HCG, α -FP, 17-hydroxyprogesterone, testosterone, dehydroepiandrosterone sulfate, androstenedione
- Abdominal ultrasonography every 4 months
- Annual brain MRI
- Annual rapid whole-body MRI

Children Older Than 16 Years and Adults

- Annual history and physical examination
- Blood tests every 4 months: FBC, LDH, ESR
- Annual brain MRI
- Annual rapid whole-body MRI
- Colonoscopy every 3 years, starting at 25 years

Females 20-40 years

annual breast MRI, mammography optional

 >40 years: annual breast MRI and mammography

Efficacy of NCI TP53 screening schema

- 116 participants
- Baseline screening found cancer in 8
 - 2 lung adenocarcinomas, 1 osteosarcoma, 1 astrocytoma, 1 low grade glioma, 2 pre-invasive breast cancers
- 40 participants required additional tests
- Non-MRI techniques did not lead to diagnosis of cancer in this cohort
- Prospective screening now underway

LiFe-Guard Study – surveillance programme in the Netherlands

- TP53 mutation carriers screened by annual whole body MRI, + breast MRI in females, & brain MRI or colonoscopy according to FH
- 56 pts
 - 32 abnormal findings
 - 4 cancers: 2 breast primaries, 1 metastatic breast,
 1 CLL 7% detection rate
 - 28 false positives

Ruijs et al JAMA Oncol 2017

ISKS: next steps, next questions

- Whole genome sequencing completed on 1160 individuals and 2840 controls results awaited
- Outstanding questions we hope to answer:
 - Extent of missing heritability?
 - Fraction of families with clinically recognisable syndromes carry mutation that can't currently be detected – non-coding DNA?, mitochondrial DNA??
 - New genes?
 - Are some variations subtype-specific?
 - Can we explain ethnic variation?

Acknowledgements

I should like to thank David Thomas & Mandy Ballinger for developing and conducting the study, and for providing me with their slides; all the staff at the Royal Marsden & University College Hospital who have worked on the study to date; and Sarcoma UK for their support