

Understanding the biology of desmoids. Are we talking about one disease or different types of desmoids?

2nd february 2020| Eva Wardelmann, Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster

DISCLOSURE SLIDE

- I received honoraria and travel grants from Nanobiotix, Milestone/Menarini, New Oncology, Lilly, Novartis Oncology, Roche and Bayer
- I serve as vice president of the International Academy for Pathology (IAP), as member of the management board of the German Society of Pathology (DGP), as member of the steering committee of the German S3-Guidelines for Sarcomas (under the auspices of the German Cancer Society DKG), as founder member of the German Sarcoma Foundation (DSS) and as chair of the Subcommittee for Pathology and Translational Research of the STBSG (EORTC)

What is a desmoid/fibromatosis?

desmoid:

✓ desmos (greek) band, chain, bond

✓-oid: comparable, similar

fibromatosis:

✓ fibra: (latin) fiber

✓ -osis: chronic disease

desmoid fibromatosis desmoid-type fibromatosis fibromatosis desmoid desmoid tumor

Let's look into the WHO classification

2013

Benign Nodular fasciitis Proliferative fasciitis Proliferative myositis Myositis ossifficans Fibro-osseous pseudotumour of digits Ischemic fasciitis Elastofibroma Fibrous hamartoma of infancy Fibromatosis colli Juvenile hyaline fibromatosis Inclusion body fibromatosis Fibroma of tendon sheath Desmoplastic fibroblastoma Mammary-type myofibroblastoma Calcifying aponeurotic fibroma Angiomyofibroblastoma Cellular angiofibroma Nuchal-type fibroma Gardner fibroma Calcifying fibrous tumour

Intermediate (rarely metastasizing) Dermatofibrosarcoma protuberans Fibrosarcomatous dermatofibrosarcoma protuberans Pigmented dermatofibrosarcoma protuberans Solitary fibrous tumour Solitary fibrous tumour, malignant Inflammatory myofibroblastic tumour Low grade myofibroblastic sarcoma Myxoinflammatory fibroblastic sarcoma / Atypical myxoinflammatory fibroblastic tumour

Malignant

Adult fibrosarcoma Myxofibrosarcoma Low-grade fibromyxoid sarcoma Sclerosing epithelioid fibrosarcoma

Intermediate (locally aggressive) Palmar / plantar fibromatosis Desmoid-type fibromatosis Lipofibromatosis Giant cell fibroblastoma

Who get's a desmoid?

- 5-6 cases per 1 million per year
- Peak age: 30 to 40 years
- female predominance

©perfectmatch - stock.adobe.com

https://www.dupuvtren-online.de/images/ Ledderhose Debbie beforeRT.jpg 2nd february 2020 Desmoid pathology Eva Wardelmann page 6

Knuckle pads

https://i2.wp.com/plasticsurgerykey.com/ wp-content/uploads/2018/10/C3-FF7-2.gif?w=960

Guillaume Dupuytren 1777-1835 French surgeon

Georg Ledderhose 1855-1925 German surgeon

What is the difference between superficial (plantar and palmar) fibromatosis and desmoid-type fibromatosis?

- Superficial fibromatosis occurs on hands and feet (Dupuytren disease and Ledderhose disease)
- Microscopically, superficial fibromatosis looks very similar compared to desmoid-type fibromatosis
- Superficial fibromatosis has some common features with desmoid fibromatosis but no CTNNB1 mutations
- Incidence increases with age > 30 years
- male predominance

Dupuytren disease

https://www.handchirurgie-hofbeck.de/wp-content/uploads/2017/05/wsb_853x499_dupuytrencollage.jpg

Where do desmoid-type fibromatoses occur?

Everywhere in the body!

in the www: aggressive benign semi-malignant intermediate invasive

WHO classification:

intermediate biology (locally aggressive)

- can regress
- can recur
- do not metastasize
- can affect quality of life

. . .

39-years old female patient with a 6 cm measuring nodular tumor of the transversal colon connected to the abdominal wall

Infiltrative margins

Ş

Bland cytomorphology

page 1

Important differential diagnoses

Dedifferentiated liposarcoma

MDM2/CDK4 overexpression/amplification

GIST (spindle cell type)

KIT+; CD34+; DOG-1+;

Typically connected to the lamina muscularis propria of the tubular GI tract, often protrudes into the mesentery

Retroperitoneal fibrosis (Ormond's disease)

hyalinised collagen

Lymphoplasmocytic infiltrate

no nuclear ß-catenin expression

IgG4-expressing plasma cells increased

Morphologic similarities of GIST and fibromatosis

Differential diagnosis can be made easily by immunohistochemistry:

- ß-catenin
- CD34
- DOG 1
- CD117

The life of ß-catenin in the cell

Functions:

- dual role in development signalling and structural
- establishment of body axis
- tissue homeostasis
- cell renewal
- regeneration

APC RETENTION DEGRADATION β-Catenin B-Catenin β-Catenin ADHERENS JUNCTIONS E-cadherin B-Catenin Axin CK1 B-Catenin GSK3 B-Catenin DESTRUCTION APC COMPLEX α SYNTHESIS B-Catenin Actin a Accumulation in response a-catenin IMPORT CENTROSOME Nuclear to Wnt translocation β-Catenin EXPORT β-Catenin B-Catenin TCF TF Transcription Transcription TCF/β-catenin transcription **TCF-independent** Canonical Wnt signalling transcription

Wnt

ß-catenin level and location in the cell varies...

page 20 | 2nd february 2020|Desmoid pathology| Eva Wardelmann

Courtesy of Arend Koch

How/where ß-catenin is regulated

mobiliteration	OTLO	LILINE	ronomon (ennancement of)	nereneroes
Ser/Thr phosphorylation	S33, S37	GSK3	Degradation, provides sites for $\beta\text{-TrCP}$	Winston et al (1999) Liu et al (1999)
	T41	GSK3	Degradation, phosporylation relay site	Wu and He (2006)
	S45	CK1	Degradation, priming for GSK3	Liu et al (2002)
	T112	CK2	Adhesion, promotes α -catenin binding	Bek and Kemler (2002)
	T120	PKD1	Inhibition of signalling by immobilization of β-catenin in trans-Golgi	Du et al (2009) Du et al (2012)
	S191	JNK2	Nuclear translocation	Wu et al (2008)
	S246	Cdk5	Inhibition of APC binding (via Pin 1)	Muñoz et al (2007)
	T393	CK2	Signalling, promotes stability	Song et al (2003)
	S552	Akt, PKA	Signalling	Fang et al (2007)
	S605	JNK2	Nuclear translocation	Wu et al (2008)
	S675	РКА	Signalling, enhancement of CBP binding	Fang et al (2007) van Veelen et al (2011)
	S675	PAK (p21 activ. kinase)	Signalling, promoting stability and transcription	Zhu et al (2012)
	S23, S29	CK2 (?)	Stability (?)	van Noort et al (2002)
	(?) (in Drosophila)	Hipk, HipK2	Promoting stability of Armadillo (opposite in other system reported)	Lee et al (2009) Kim et al (2010)
	S764, S802, S827 (sites not in vertebrates)	NLK	Connecting Armadillo–E-cadherin complex with Wnt/PCP pathway	Mirkovic et al (2011)
Tyr phosphorylation	Y654	Src	Signalling, reduces cadherin binding allows TBP binding	Huber and Weis, (2001) van Veelen et al (2011)
	Y142	Fer/Fyn; Met	Signalling, reduces α -catenin binding	Brembeck et al (2004) Bustos et al (2006)
	Y86, Y654	Bcr-Abl, Abl	Signalling, stabilizing β-catenin	Coluccia et al (2007)
	Y333	Src (EGFR mediated)	Signalling, promotes nuclear function in response to EGF (Wnt independent)	Yang et al (2011 b)
	Y489	Abl	Signalling, disrupts binding to N-cadherin	Rhee et al (2007)
	Y654, Y670	Met (?)	Signalling, HFG-mediated release from membrane	Zeng et al (2006)
Ubiquitylation	K19	SCF ubiquitin ligase	Degradation	Wu et al (2003)
	K666, K671	Siah-1	Degradation, block of signalling	Dimitrova et al (2010)
Acetylation	K49	CBP	Signalling, enhancement of target specific β-catenin transcription (c-myc)	Wolf et al (2002)
	K345	p300	Signalling, increases binding of TCF, reduces binding to AR	Lévy et al (2004)
Glycosylation	(?)	O-GIcNAc transferase	Reduces nuclear localization	Sayat et al (2008)

Valenta et al. EMBO J 2012

		CK1a S45				
		в				
		MODIFICATION	SITES	ENZYME	FUNCTION (enhancement of)	REFERENCES
		Ser/Thr phosphorylatio	S33, S37	GSK3	GSK3 Degradation, provides sites for β-TrCP	
			T41	GSK3	Degradation, phosporylation relay site	Wu and He (2006)
			S45	CK1	Degradation, priming for GSK3	Liu et al (2002)
			T112	CK2	Adhesion, promotes $\alpha\text{-catenin}$ binding	Bek and Kemler (2002)
			T120	PKD1	Inhibition of signalling by immobilization of β -catenin in trans-Golgi	Du et al (2009) Du et al (2012)
			S191	JNK2	Nuclear translocation	Wu et al (2008)
			S246	Cdk5	Inhibition of APC binding (via Pin 1)	Muñoz et al (2007)
	K		T393	CK2	Signalling, promotes stability	Song et al (2003)
			S552	Akt, PKA	Signalling	Fang et al (2007)
			S605	JNK2	Nuclear translocation	Wu et al (2008)
MODIFICATION	SITES	ENZYM	E	FUNCTION (enha	ncement of)	REFERENCES
Ser/Thr phosphorylation	S33, S37	GSK3		Degradation, prov	Winston et al (1999) Liu et al (1999)	
	T41	GSK3		Degradation, pho	Wu and He (2006)	
	S45	CK1		Degradation, prim	ning for GSK3	Liu et al (2002)
		Tyr pho phorylation	Y654	Src	Signalling, reduces cadherin binding allows TBP binding	Huber and Weis, (2001) van Veelen et al. (2011)
			Y142	Fer/Fyn; Met	Signalling, reduces α -catenin binding	Brembeck et al (2004) Bustos et al (2006)
			Y86, Y654	Bcr-Abl, Abl	Signalling, stabilizing β-catenin	Coluccia et al (2007)
			Y333	Src (EGFR mediated)	Signalling, promotes nuclear function in response to EGF (Wnt independent)	Yang et al (2011 b)
			Y489	Abl	Signalling, disrupts binding to N-cadherin	Rhee et al (2007)
			Y654, Y670	Met (?)	Signalling, HFG-mediated release from membrane	Zeng et al (2006)
	Ubiquitylation		K19	SCF ubiquitin ligase	Degradation	Wu et al (2003)
			K666, K671	Siah-1	Degradation, block of signalling	Dimitrova et al (2010)
		Acetylation	K49	CBP	Signalling, enhancement of target specific β-catenin transcription (c-myc)	Wolf et al (2002)
			K345	p300	Signalling, increases binding of TCF, reduces binding to AR	Lévy et al (2004)
		Glycosylation	(?)	O-GIcNAc transferase	Reduces nuclear localization	Sayat et al (2008)

GSK38

S33 S37 T41

Α

V333

Valenta et al. EMBO J 2012

S552 Akt Src Y654 S675 PKA

Münster

B. cKIT (exon 10)

- in a subgroup of fibromatoses more complex CTNNB1 mutations occur
- additional mutations in *KIT* exon 10 are observed in single cases

How to perform mutation analysis? and What is the relevance of mutation analysis?

Mutation analysis in desmoid fibromatosis Technical aspects:

identification and quantification of tumor content in the slide

deparaffinisation

macrodissection

0°6 Elah

Mutation analysis in desmoid fibromatosis

Sanger Sequencing

Sanger sequencing in desmoid fibromatosis

Next generation sequencing (NGS): principle

Next Generation Sequencing

Adaptor ligation (Library)

<u>clonal</u> amplification of single molecules <u>Parallel</u> sequencing of the amplicon <u>clones</u>

page 30 | 2nd february 2020|Desmoid pathology| Eva Wardelmann

page 31

Next Generation Sequencing - Workflow

β-Catenin (*CTNNB1*) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis

Table 1. Baseline characteristics of patients in our cohort

Localization	п	Tumour size (mm)	Age at onset (years)	Sex (male/female)	
Desmoid-type fibromatosis	84	106 (20–300)	44.9 (8–87)	37/47	
Extra-abdominal	13	73 (25–140)	33.0 (8–77)	5/8	
Abdominal wall	15	120 (30–300)	35.5 (19–64)	1/14	
Mesenteric	56	109 (20–220)	50.0 (17–87)	31/25	
Retroperitoneal fibrosis	11	49 (15–82)	52.9 (29–80)	5/6	

Macroscopic findings	Firmish white mass Often macroscopically circumscribed			
	Originates from mesentery but may infiltrate entire gut wall			
Microscopic findings	Uniform bland spindle cells			
	Stellate cells with hypochromatic nuclei			
	Infiltrates surrounding soft tissue (might be absent)			
	Fine fibrillar collagen around spindle cells in more cellular areas			
	Frequent keloid-like collagen deposits			
	Thin-walled dilated blood vessels			
	Paucicellular perivascular spaces			
Immunohistochemistry	Vimentin+			
	SMA+/-			
	Nuclear β-catenin+			
Molecular	APC mutations (germline, rare)			
analysis	CTNNB1 mutations (somatic, >80%)			
Most frequent	Dedifferentiated liposarcoma			
differential diagnoses	MDM2/CDK4 overexpression/amplification			
	GIST (spindle cell phenotype)			
	KIT+; CD34+; DOG-1+			
	Typically originates from muscularis propria of stomach, smal bowel, or rectum, but may extend into mesentery			
	Retroperitoneal fibrosis (Ormond's disease)			
	Hyalinized collagen			
	Lymphoplasmacytic infiltrate			
	Nuclear β-catenin–			

CDK4, Cyclin-dependent kinase 4; GIST, gastrointestinal stromal tumour; SMA, smooth muscle actin.

 Table 2.
 Diagnostic criteria

for mesenteric desmoid-

type fibromatosis

β-Catenin (*CTNNB1*) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis

Table 3. CTNNB1 mutational status of patients with desmoid-type fibromatosis and retroperitoneal fibrosis

		CTNNB1 mutational status, n (%)							
Localization	п	WT [cases associated with FAP in square brackets]	D32G	T41A	S45F	S45P	S45C	Delins	
Desmoid-type fibromatosis	84	13 (15.5) [5 (6.0)]	1 (1.2)	58 (69.0)	5 (6.0)	5 (6.0)	1 (1.2)	1 (1.2)*	
Extra-abdominal	13	2 (15.4) [1 (7.7)]	0	7 (53.8)	2 (15.4)	2 (15.4)	0	0	
Abdominal wall	15	6 (40.0) [4 (26.7)]	1 (6.7)	6 (40.0)	1 (6.7)	1 (6.7)	0	0	
Mesenteric	56	5 (8.9) [0]	0	45 (80.4)	2 (3.6)	2 (3.6)	1 (1.8)	1 (1.8)*	
Retroperitoneal fibrosis	11	0 [0]	0	0	0	0	0	0	

FAP, Familial adenomatous polyposis coli (Gardner's syndrome); WT, wild type. *p.T42_K49delinsQ.

Huss S, Nehles J, Binot E, Wardelmann E, Mittler J, Kleine M A, Künstlinger H, Hartmann W, Hohenberger P, Merkelbach-Bruse S, Buettner R & Schildhaus H-U (2013) *Histopathology* **62**, 294–304

What about patients without CTNNB1 mutations?

- the majority of them has an APC mutation, mostly in a hereditary background
- APC germline mutations lead to familial adenomatous polyposis (FAP)
- esp. in young patients without *CTNNB1* mutation FAP should be considered and patients should get coloscopy to exclude such a possibility
- a small minority of patients has sporadic APC mutations
- very few patients have alterations in other parts of the Wnt pathway

Correlation between ß-catenin expression and CTNNB1 mutation

Nuclear ß-catenin

expression

CTNNB1 mutation

		Positive	Negative
D32G		1	0
T41A		54	4
S45F		5	0
S45P		4	1
S45C		1	0
T42_K49delinsQ		1	0
	Associated with FAP	3	2
Wild type	Not associated with FAP	8	0
Total		77	7

Most frequent mutational subtypes in CTNNB1 in fibromatosis

	n	%
WT	22	25,9
p.T41A	37	43,5
p.T41I	4	4,7
p.S45F	7	8,2
p.S45P	10	11,8
p.[(S45T(;)S45Y)]*	1	1,2
p.[(S45P(;)S45F)]*	2	2,4
p.[(S45F(;)S45S)]*	1	1,2
p.S45delinsKA	1	1,2
n(total)	85	100
	*doub	le mutant

■ c.[133T>A(;)134C>A]; p.[(S45T(;)S45Y)] ■ c.[133T>C(;)134C>T]; p.[(S45P(;)S45F)] ■ c.[134C>T(;)135T>C]; p.[(S45F(;)S45S)] ■ c.133delinsAAGG; p.S45delinsKA

KIT exon 10 variants: Relevance for biological behavior or for response to treatment?

Impact of *KIT* exon 10 M541L allelic variant on the response to imatinib in aggressive fibromatosis: analysis of the desminib series by competitive allele specific Taqman PCR technology

Armelle Dufresne^{1,2*}, Laurent Alberti¹, Mehdi Brahmi¹, Sarah Kabani¹, Héloïse Philippon¹, David Pérol³ and Jean Yves Blay^{1,2}

Table 2 Distribution of objective response observed at6 months and 1 year according to KIT status

	<i>КІТ^{₩Т}</i> (n = 22)	<i>KIT</i> ^{L541} (n = 5)	Chi 2
Response at 6 months			
CR/PR	3	1	
SD	15	4	
PD	4	0	
			p=0,57683407
Response at 1 year			
CR/PR	2	1	
SD	13	4	
PD	7	0	p=0,31614938

Prognostic relevance of the mutational subtype in CTNNB1 in fibromatosis

Sporadic desmoid-type fibromatosis: a stepwise approach to a non-metastasising neoplasm — a position paper from the Italian and the French Sarcoma Group

A. Gronchi^{1*}, C. Colombo¹, C. Le Péchoux², A. P. Dei Tos³, A. Le Cesne⁴, A. Marrari⁵, N. Penel⁶,
G. Grignani⁷, J. Y. Blay⁸, P. G. Casali⁵, E. Stoeckle⁹, F. Gherlinzoni¹⁰, P. Meeus¹¹, C. Mussi¹²,
F. Gouin¹³, F. Duffaud¹⁴, M. Fiore¹, S. Bonvalot¹⁵ & on behalf of ISG and FSG Ann Oncol 2013

Prognostic Value of *CTNNB1* **Gene Mutation in Primary Sporadic Aggressive Fibromatosis**

Danique L. M. van Broekhoven, MD¹, Cornelis Verhoef, MD, PhD¹, Dirk J. Grünhagen, MD, PhD¹, Joost M. H. H. van Gorp, MD, PhD², Michael A. den Bakker, MD, PhD³, John W. J. Hinrichs, PhD⁴, Carmen M. A. de Voijs⁴, and Thijs van Dalen, MD, PhD⁵ Ann Surg Oncol 2015

Correlation of *CTNNB1* **Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01)**

Bernd Kasper, MD, PhD¹, Viktor Gruenwald, MD, PhD², Peter Reichardt, MD³, Sebastian Bauer, MD, PhD⁴, Peter Hohenberger, MD, PhD¹, and Florian Haller, MD, PhD⁵ Ann Surg Oncol 2016

The frequency of additional mutations in fibromatosis...

Summary

- Desmoid-type fibromatosis can occur everywhere
- biological behavior is not predictable
- S45F mutations could be an indicator of an increased recurrence risk
- S45 mutations are associated with a higher progression arrest rate under imatinib compared to T41 mutations and wild type
- a subgroup of desmoid type-fibromatoses has additional allelic variants in *KIT* exon 10, probably polymorphisms with clinical relevance
- Additional mutations occur in 15% of cases
- Patients with *CTNNB1*-wildtype desmoids could be FAP patients and should get a coloscopy
- Treatment strategies are still diverse, including "watch and wait"

University Hospital Münster

Gerhard-Domagk-Institute of Pathology

Helfen.

Informieren.

Forschen.

.......

